第二種電気工事士筆記試験解答・解説【平成30年度上期 問1~10】

本記事では、第二種電気工事士筆記試験のうち「平成30年度上期 問1~10」について解説する。

問1

図のような回路で、スイッチSを閉じたとき、端子a-b間の電圧[V]は。

イ.$30$  ロ.$40$  ハ.$50$  ニ.$60$

 

 

解説

スイッチSが閉じた場合、下図のように赤×の抵抗が無視できる。

 

 

このとき、電圧$100\mathrm{V}$に対し、抵抗$30\Omega$が$2$個直列になっており、端子$\mathrm{a-b}$間の電圧$[\mathrm{V}]$はそのうち片方の抵抗にかかる電圧を計算すればよく、

$$100\times\frac{30}{30+30}=50\mathrm{V}$$

 

よって「ハ」が正解となる。

 

関連記事

 

類題

 

問2

コイルに$100\mathrm{V}$,$50\mathrm{Hz}$の交流電圧を加えたら$6\mathrm{A}$の電流が流れた。

このコイルに$100\mathrm{V}$,$60\mathrm{Hz}$の交流電圧を加えたときに流れる電流$[\mathrm{A}]$は。

ただし、コイルの抵抗は無視できるものとする。

イ.$4$  ロ.$5$  ハ.$6$  ニ.$7$

 

解説

コイルの自己インダクタンスを$L[\mathrm{H}]$とし、周波数$f[\mathrm{Hz}]$の交流電圧$V[\mathrm{V}]$を加えたときに流れる電流$I[\mathrm{A}]$は、

$$I=\frac{V}{2\pi fL}$$

 

上式を変形して、問題文で与えられた数値を代入すると、

$$\begin{align*}
L&=\frac{V}{2\pi fL}\\\\
&=\frac{100}{2\pi\times50\times 6}\\\\
&=\frac{1}{6\pi}
\end{align*}$$

 

したがって、$f=60\mathrm{Hz},V=100\mathrm{V}$の場合の電流$I'[\mathrm{A}]$は、

$$I’=\frac{100}{2\pi\times60\times\displaystyle{\frac{1}{6\pi}}}=5\mathrm{A}$$

 

よって「ロ」が正解となる。

 

関連記事

 

類題

 

問3

ビニル絶縁電線(単心)の導体の直径を$D$,長さを$L$とするとき、この電線の抵抗と許容電流に関する記述として、誤っているものは。

イ.許容電流は、周囲の温度が上昇すると、大きくなる。

ロ.許容電流は、$D$が大きくなると、大きくなる。

ハ.電線の抵抗は、$L$に比例する。

ニ.電線の抵抗は、$D^2$に反比例する。

 

解説

抵抗率$\rho[\Omega\cdot\mathrm{m}]$ ,直径$D[\mathrm{mm}]$ ,長さ$L[\mathrm{m}]$の導線の電気抵抗$R$は、

$$R=\frac{4\rho L}{\pi D^2}$$

 

選択肢の文章をそれぞれ検証すると、

  • 電線の抵抗は温度上昇すると増加するので、オームの法則より許容電流は小さくなる。したがって、イは誤っている。
  • 許容電流は、抵抗$R$の式とオームの法則により、直径$D$が大きくなると比例して大きくなる。したがって、ロは正しい。
  • 抵抗$R$の式より、電線の抵抗は$L$に比例する。したがって、ハは正しい。
  • 抵抗$R$の式より、電線の抵抗は$D^2$に反比例する。したがって、ニは正しい。

 

よって「イ」が正解となる。

 

関連記事

 

類題

 

問4

電線の接続不良により、接続点の接触抵抗が$0.2\Omega$となった。

この電線に$15\mathrm{A}$の電流が流れると、接続点から1時間に発生する熱量$[\mathrm{kJ}]$は。

ただし、接触抵抗の値は変化しないものとする。

イ.$11$  ロ.$45$  ハ.$72$  ニ.$162$

 

解説

電線の接続点の接触抵抗を$R[\Omega]$,流れる電流を$I[\mathrm{A}]$,流れた時間を$t[\mathrm{s}]$とすると、その点に発生する熱量は$W=I^2Rt[\mathrm{J}]$で表される。

したがって、発生熱量$W$は、

$$W=15^2\times0.2\times3600=162000\mathrm{J}\rightarrow\boldsymbol{162\mathrm{kJ}}$$

よって「ニ」が正解となる。

 

関連記事

 

類題

 

問5

図のような三相負荷に三相交流電圧を加えたとき、各線に$20\mathrm{A}$の電流が流れた。

線間電圧$E[\mathrm{V}]$は。

 

 

イ.$120$  ロ.$173$  ハ.$208$  ニ.$240$

 

解説

図の$\mathrm{Y}$結線の抵抗負荷で、線電流を$I_l[\mathrm{A}]$,相電流を$I_p[\mathrm{A}]$,相電圧を$E_p[\mathrm{V}]$とした場合、$I_p=I_l=20\mathrm{A},\ E=\sqrt{3}E_p[\mathrm{V}]$となるから、回路の抵抗を$R[\Omega]$とすると、線間電圧$E[\mathrm{V}]$は、

$$\begin{align*}
E&=\sqrt{3}RI_p\\\\
&\fallingdotseq1.73\times120\\\\
&=207.6\mathrm{V}\\\\
&\fallingdotseq\boldsymbol{208\mathrm{V}}
\end{align*}$$

 

よって「ハ」が正解となる。

 

関連記事

 

類題

 

 

問6

図のように、電線のこう長$16\mathrm{m}$の配線により、消費電力$2000\mathrm{W}$の抵抗負荷に電力を供給した結果、負荷の両端の電圧は$100\mathrm{V}$であった。

配線における電圧降下$[\mathrm{V}]$は。

ただし、電線の電気抵抗は長さ$1000\mathrm{m}$当たり$3.2\Omega$とする。

イ.$1$  ロ.$2$  ハ.$3$  ニ.$4$

 

 

解説

回路に流れる電流$I$は

$$I=\frac{2000}{100}=20\mathrm{A}$$

 

また、$16\mathrm{m}$の電線1本の電気抵抗は、

$$\frac{3.2}{1000}\times16=0.0512\Omega$$

 

単相2線式回路の電圧降下は、

$$V=2rl=2\times0.0512\times20=2.048\rightarrow\boldsymbol{2\mathrm{V}}$$

 

よって「ロ」が正解となる。

 

関連記事

 

類題

 

問7

図のような単相3線式回路において、電線1線当たりの抵抗が$0.1\Omega$のとき、$\mathrm{a-b}$間の電圧$[\mathrm{V}]$は。

イ.$96$  ロ.$100$  ハ.$102$  ニ.$106$

 

 

解説

図の左端の端子に点$\mathrm{A}$および点$\mathrm{B}$を定めて、電線1線当たりの抵抗を$r[\Omega]$とする。

また、抵抗負荷に流れる電流をそれぞれ$I_1[\mathrm{A}],\ I_2[\mathrm{A}]$とする。

 

 

点$\mathrm{A-B}$間の電圧降下$v_{\mathrm{AB}}[\mathrm{V}]$は、

$$\begin{align*}
v_{\mathrm{AB}}&=rI_1+r\left(I_1-I_2\right)\\\\
&=0.2\times10+0.2\times\left(10-10\right)\\\\
&=2\mathrm{V}
\end{align*}$$

 

$\mathrm{a-b}$間の電圧$V_{\mathrm{ab}}[\mathrm{V}]$は、$\mathrm{A-B}$間の電圧$V_{\mathrm{AB}}=103\mathrm{V}$から電圧降下$v_{\mathrm{AB}}[\mathrm{V}]$を差し引いたものであるから、

$$\begin{align*}
V_{\mathrm{ab}}&=V_{\mathrm{AB}}-v_{\mathrm{AB}}\\\\
&=104-2\\\\
&=102\mathrm{V}
\end{align*}$$

 

よって「ハ」が正解となる。

 

関連記事

 

類題

 

問8

金属管による低圧屋内配線工事で、管内に直径$2.0\mathrm{mm}$の$600\mathrm{V}$ビニル絶縁電線(軟銅線)4本を収めて施設した場合、電線1本当たりの許容電流$[\mathrm{A}]$は。

ただし、周囲温度は$30^\circ\mathrm{C}$以下、電流減少係数は$0.63$とする。

イ.$17$  ロ.$22$  ハ.$30$  ニ.$35$

 

解説

直径$2.0\mathrm{mm}$の$600\mathrm{V}$ビニル絶縁電線(軟銅線)の許容電流は$35\mathrm{A}$である。

 

電流減少係数が$0.63$であるから、電線1本当たりの許容電流$[\mathrm{A}]$は、

$$35\times0.63=22.05\mathrm{A}\rightarrow\boldsymbol{\underline{22\mathrm{A}}}$$

 

よって「ロ」が正解となる。

 

関連記事

 

類題

 

問9

図のように定格電流$100\mathrm{A}$の過電流遮断器で保護された低圧屋内幹線から分岐して、$6\mathrm{m}$の位置に過電流遮断器を施設するとき、$\mathrm{a-b}$間の電線の許容電流の最小値$[\mathrm{A}]$は。

イ.$25$  ロ.$35$  ハ.$45$  ニ.$55$

 

 

解説

幹線の過電流遮断器の定格電流を$I_B$,分岐点から電線の許容電流を$I_W$とすると、電技解釈第149条により、分岐回路の過電流遮断器を分岐点から$3\mathrm{m}$を超え$8\mathrm{m}$以下の位置に施設する場合は、$I_W$を$I_B$の$\boldsymbol{35\%}$以上にしなければならない。

 

上記より、許容電流の最小値は、

$$0.35\times100=\boldsymbol{35\mathrm{A}}$$

 

よって「ロ」が正解となる。

 

関連記事

 

類題

 

問10

低圧屋内配線の分岐回路の設計で、配線用遮断器の定格電流とコンセントの組合せとして、不適切なものは。

 

 

解説

電技解釈第149条により、$20\mathrm{A}$分岐回路では、

  • 電線の太さ$1.6\mathrm{mm}$(または$2.0\mathrm{mm^2}$)以上
  • コンセントの定格電流は$20\mathrm{A}$以下

 

$30\mathrm{A}$分岐回路では、

  • 電線の太さ$2.6\mathrm{mm}$(または$5.5\mathrm{mm^2}$)以上
  • コンセントの定格電流は$20\mathrm{A}$以上$30\mathrm{A}$以下

でなければならない。

 

選択肢について検証すると、

  • イは適切である。
  • ロは適切である。
  • ハは適切である。
  • ニは定格電流$\boldsymbol{15\mathrm{A}}$のコンセントなので不適切である。

 

よって「ニ」が正解である。

 

関連記事

 

類題

 

この年度の他の問題

 

電工二種DB

技能試験 2023年度候補問題 2023年度第二種電気工事士技能試験 候補問題No.1 2023年度第二種電気工事士技能試験 候補問題No.2 2023年度第二種電気工事士技能試験 候補問題N[…]

著書・製品のご紹介

『書籍×動画』が織り成す、未だかつてない最高の学習体験があなたを待っている!

電験戦士教本

※本ページはプロモーションが含まれています。―『書籍×動画』が織り成す、未だかつてない最高の学習体験があなたを待っている― 当サイト「電気の神髄」をいつもご利用ありがとうございます。管理人の摺り足の加藤です。[…]

 

この講座との出会いは、数学が苦手なあなたを救う!

一般社団法人 建設業教育協会

電験アカデミアにテキストを書き下ろしてもらい、電験どうでしょうの川尻将先生により動画解説を行ない、電験3種受験予定者が電…

 

すべての電験二種受験生の方に向けて「最強の対策教材」作りました!

SAT二種講座

※本ページはプロモーションが含まれています。すべての電験二種受験生の方に向けて「最強の対策教材」作りました! 当サイト「電気の神髄」をいつもご愛読ありがとうございます。管理人の摺り足の加藤です。 […]

 

初学者が躓きがちなギモンを、電験アカデミアがスッキリ解決します!

電験カフェ

※本ページはプロモーションが含まれています。 当サイト「電気の神髄」をいつもご利用ありがとうございます。管理人の摺り足の加藤です。 2022年5月18日、オーム社より「電験カフェへようこそ[…]